Regine Pfeiff and Rüdiger Kniep*

Eduard-Zintl-Institut, Technische Hochschule Darmstadt, Hochschulstrasse 10, 6100 Darmstadt (Germany)

(Received January 17, 1992)

Abstract

The layered compounds $\text{CuCr}[P_2\text{Se}_6]$ (m.p. 730 °C, incongruent), $\text{AgCr}[P_2\text{Se}_6]$ (m.p. 720 °C, incongruent), $\text{AgAl}[P_2\text{Se}_6]$ (m.p. 588 °C, congruent), $\text{CuIn}[P_2\text{Se}_6]$ (m.p. 642 °C, incongruent), $\text{AgIn}[P_2\text{Se}_6]$ (m.p. 673 °C, congruent), α -AgGa $[P_2\text{Se}_6]$ (m.p. 450 °C, congruent) and β -AgGa $[P_2\text{Se}_6]$ (metastable) were prepared from the elements in evacuated silica tubes (molar ratios M¹:M¹¹¹:P:Se = 1:1:2:6) by heating up to 750 °C (10 h) followed by quenching/annealing or by cooling from the melt (Bridgman technique).

The crystal structures of CuIn[P₂Se₆], AgIn[P₂S₆] (trigonal, $P\bar{3}1c$; a=639.2(0), 648.3(1); c=1333.8(1), 1333.0(4) pm; Z=2) and β -AgGa[P₂Se₆] (trigonal, $P\bar{3}1c$; a=637.5(6), c=1332.0(1) pm; Z=2) are related to the CdI₂ structure type whereas the crystal structures of CuCr[P₂Se₆], AgCr[P₂Se₆] and AgAl[P₂Se₆] (monoclinic, C2/m; a=619.3(3), 630.5(8), 634.8(5); b=1072.4(2), 1091.7(3), 1098.9(3); c=690.9(9), 699.1(1), 702.8(4) pm; $\beta=107.2(7)$, 107.7(1), 107.2(1)°; Z=2) are related to the CdCl₂ structure type. α -AgGa[P₂Se₆] (orthorhombic, Pbca; a=1216.9(5), b=2248.4(6), c=747.3(2) pm; Z=4) shows close relationships to the crystal structure of Ag₄[P₂Se₆].

1. Introduction

The first selenodiphosphate(IV), $Fe_2[P_2Se_6]$, was reported by Hahn *et al.* in 1973 [1]. The crystal structure contains Se_6 octahedra with central P–P pairs (corresponds to $[P_2Se_6]^{4-}$ structural units). Today we know a large variety of ternary selenodiphosphates(IV) with M^I (Ag [2]; TI [3]), M^{II} (Fe [1]; Co, Ni, Mn, Mg, Ca, Cd [4]; Sn, Pb [5]; Hg [6]) and M^{III} (In [7]). The crystal structures of the ternary phases (M^{II})₂[P₂Se₆] are related either to the CdI₂ structure type (for example Fe₂[P₂Se₆], [1]) or to the CdCl₂ structure type (for example Ni₂[P₂Se₆], [4]). Selenium atoms are arranged in "close-packed" layers which are stacked with the sequences ...AB... and ...ABC... respectively. M^{II} ions and P₂ pairs occupy the octahedral sites of every second Se double-layer in such a way that the P₂ pairs are surrounded by M^{II} species.

The only ternary M^{III} selenodiphosphate(IV) known up to now was $In_{1,33} \square_{0.67}[P_2Se_6]$ (corresponds to $In_2[P_3Se_9]$) which was found to exist in

^{*}Author to whom correspondence should be addressed.

two different modifications: (i) statistical distribution of In(III) and vacancies on the octahedral sites (trigonal, $R\bar{3}$; a=637.3(3), c=1986.8(8) pm; Z=3, [7]); (ii) superstructure In_{1.33} $\Box_{0.67}$ [P₂Se₆] with an ordered distribution of In(III) and vacancies on the octahedral sites (orthorhombic, *Pba2*; a=1919.7(9), b=1109.0(9), c=2006.7(7) pm; Z=6, [8]). Investigations of the photoelectrical properties of In_{1.33} $\Box_{0.67}$ [P₂Se₆] showed the ternary phase to be suitable for photovoltaic devices [9].

Together with the knowledge of some new solar-cell materials based on the ternary selenides $CuInSe_2$ and $CuGaSe_2$ [10] we were interested in quaternary selenodiphosphates(IV) containing the cationic components M^{II} and M^{III} with a molar ratio of 1:1. In other words, the aim was to substitute M^{II} in compounds $(M^{II})_2[P_2Se_6]$ by $M^{I}(Ag, Cu)$ and $M^{III}(Al, Ga, In, Cr)$ in order to obtain quaternary phases of composition $M^{I}M^{III}[P_2Se_6]$, [3, 11]. The possibility of substitution of M^{II} cations by $M^{I}(Ag, Cu)$ and M^{III} (Cr, In, Sc, V) had already been demonstrated for a number of thiodiphosphates(IV) [12–17, 19] as well as for the quaternary selenodiphosphate $AgV[P_2Se_6]$ [18].

2. Experimental details and crystallographic data

Quaternary selenodiphosphates(IV) were prepared from the elements (molar ratios M¹:M^{III}:P:Se=1:1:2:6) in evacuated silica tubes by heating up to 750 °C (10 h) followed by quenching/annealing (incongruent melting) or by cooling (congruent melting behaviour) from the melt (cooling rate 30 °C h⁻¹). Single-phase products were characterized by differential thermal analysis (DTA) (sealed silica tubes; thermocouples Ni–NiCr; inert reference; heating rate 3 °C min⁻¹) and by X-ray powder diffraction (STOE diffractometer 6.11.1.; position sensitive detector; Cu K α_1 radiation; Debye–Scherrer method). In cases of isotypic relations to phases with crystal structures which were already known the structure refinements were carried out by use of the Rietveld full-profile method [20]. Single crystals were investigated on a Philips PW 1100 four-circle diffractometer (Mo K α radiation; graphite monochromator).

Melting points, melting behaviour as well as basic crystallographic data of the compounds under investigation are given in Table 1.

 $CuCr[P_2Se_6]$: details concerning the crystal structure determination from X-ray powder data (isotypic relation to Ni₂[P₂Se₆], [4]) and the resulting positional and thermal parameters are summarized in Table 2. X-ray powder patterns (observed and calculated) are given in Fig. 1 and Table 3.

 $AgCr[P_2Se_6]$ and $AgAl[P_2Se_6]$: the X-ray powder data are consistent with isotypic relations to CuCr[P_2Se_6] (Fig. 2 and Table 4).

 $CuIn[P_2Se_6]$ and $AgIn[P_2Se_6]$: the congruent melting behaviour of $AgIn[P_2Se_6]$ makes it possible to grow single crystals from the melt by use of the Bridgman technique. Large single crystals (1 cm in diameter, 3 cm in length) were obtained in closed (sealed) silica tubes (with seeding capillary

Quaternary selenodiphosphates(IV), $M^{I}M^{II}$ [P₂Se₆]: melting points (°C), melting behaviour (i=incongruent; c=congruent), temperature (°C) and time (d) of annealing after quenching the melt to liquid nitrogen, colour (Eg (eV)), cleavage and basic crystallographic data ((P)=X-ray powder investigation, (S)=single crystal data)

Compound	Space	Lattice constants (pm), (°)					
	group	a	b	с	β		
CuCr[P ₂ Se ₆] (730 °C, i; 600 °	<i>C2/m</i> °C, 21 d; dar	619.3(3) rk red (1.13 e ^v	1072.4(2) V); good cleava	690.9(9) age (001))	107.2(7) $Z=2$ (P)		
AgCr[P ₂ Se ₆] (720 °C, i; 550 °	C2/m °C, 21 d; dai	630.5(8) rk red (1.20 e ^v	1091.7(5) V); good cleava	699.1(1) age (001))	107.7(1) $Z=2$ (P)		
AgAl[P ₂ Se ₆] (588 °C, c; 550	C2/m °C, 21 d; ye	634.8(5) llow (2.42 eV)	1098.9(3) ; good cleavag	702.8(4) e (001))	107.2(5) $Z=2$ (P)		
CuIn[P ₂ Se ₆] (642 °C, i; 500 '	<i>P</i> 31 <i>c</i> °C, 14 d; dau	639.2(0) rk red (1.78 e ^v	V); perfect clea	1333.8(1) wage (001))	Z=2 (P)		
AgIn[P ₂ Se ₆] (673 °C, c; 500	<i>P</i> 31 <i>c</i> ℃, 14 d; da	648.3(1) rk red (1.79 e	V); perfect cle	1333.0(4) avage (001))	Z=2 (P)		
β -AgGa[P ₂ Se ₆] (metastable; darl	<i>P</i> 31 <i>c</i> k red (1.91 e	637.5(6) eV); perfect cle	eavage (001))	1332.0(1)	Z = 2 (S)		
α-AgGa[P ₂ Se ₆] (450 °C, c; 400	<i>Pbca</i> °C, 21 d; ye	1216.9(5) llow-red (2.60	2248.4(6) eV); good clea	747.3(2) avage (010))	Z = 2 (S)		

at the bottom), a maximum temperature of 800 °C and a "dropping-rate" of 4 cm per day. Details concerning the crystal structure determinations (isotypic relation to $AgIn[P_2S_6]$, [12]) and the resulting positional and thermal parameters for $AgIn[P_2Se_6]$ and $CuIn[P_2Se_6]$ are summarized in Tables 5 and 7. X-ray powder patterns (observed and calculated) are given in Tables 6 and 8 and Figs. 3 and 4. The relatively poor R(I, hkl) values of the structure determinations of $AgIn[P_2Se_6]$ and $CuIn[P_2Se_6]$ are presumed to be caused by effects of texture because of the perfect cleavage of the crystals' parallel (001).

AgGa[P₂Se₆]: depending on the special mode of preparation the compound is obtained in two different modifications. α -AgGa[P₂Se₆] is the stable phase under conditions of thermal equilibrium and is prepared by quenching the homogeneous melt followed by annealing at 400 °C for a period of 21 d. By cooling down the melt from 750 °C to room temperature with a rate of 30 °C h⁻¹ the metastable β -modification is formed first (Ostwald'sche Stufenregel). β -AgGa[P₂Se₆] can be converted to the stable α -phase by annealing at 350 °C for a period of 14 d. Single crystals were obtained from both modifications. Details concerning the crystal structure determinations and the resulting positional and thermal parameters are given in Tables 9 and 10.

Space group C2/m (12), monoclinic Lattice parameters (pm) a = 619.3(3) $b = 1072.4(2) \beta = 107.2(7)$ c = 690.9(9)Cell volume 690.9 pm³×10⁶ Z 2 4.9 g cm⁻³ Calculated density Absorption coefficient μ (Cu K α) 425.7 cm⁻¹ Diffractometer STOE. STADI/P Transmission powder diffractometer with position sensitive detector (STOE-PSD) Radiation Cu Ka (Germanium monochromator) 2θ range $9^\circ < 2\theta < 70^\circ$ Structure solution and refinement Isotypic relation to $Ni_{2}[P_{2}Se_{6}]$ [4] Rietveld method [20] Number of measured data points 2027 Number of profile parameters refined 13 8 Number of positional parameters refined Number of thermal parameters refined 4 R_{WP} ; R(I, h k l)8.6; 10.0 Atom x \boldsymbol{z} Occupation $U_{\rm iso} \, (\rm pm^2)^a$ yCu 0 0 0.3288(51)0.5674(95) Cr 0 0.3288(51)0 0.5674(95) Ρ 204(138) 0.0538(120)0 0.1537(56)1.0 Se 0.7402(65)0 0.2531(29)1.0 185(87) Se 0.2486(50)0.1722(18)0.2503(17)1.0 257(53) Cu/Cr-Se 263.4 $2 \times$ Se--Cu/Cr--Se 94.32 $1 \times$ 263.7 $2 \times$ 94.84 $2 \times$ 264.1 $2 \times$ 85.57 $2 \times$ 179.63 $2 \times$ 85.63 $2 \times$

179.39

85.52

94.07

94.41

103.76

114.32

114.62

103.98

 $1 \times$

 $2 \times$

 $2 \times$

 $1 \times$

 $2 \times$

 $1 \times$

 $2 \times$

 $CuCr[P_2Se_6]$: data pertaining to the structure determination; positional and thermal parameters; selected interatomic distances (pm) and bond angles (°)

 $^{*}U_{iso}$ is defined as $\exp(-8\pi^{2*}U^{*}\sin^{2}\theta/\lambda^{2})$.

225.6

211.3

211.5

 $1 \times$

 $2 \times$

P-P-Se

Se-P-Se

P-P

P-Se

TABLE	3
TADLC	J

CuCr[P₂Se₆]: X-ray powder diffraction data; observed and calculated [20] intensities

hkl	d _{obs} (pm)	FWHM ^a	$I_{ m obs}$	$I_{\rm calc}$	hkl	d _{obs} (pm)	FWHM ^a	$I_{ m obs}$	Icalc
001	660.74	0.265	171.88	160.05	331	157.50	0.211	33.97	35.42
020	536.22	0.250	10.63	0.62	062	157.30	0.212	32.74	34.43
Ī11	470.97	0.240	3.15	0.53	333	157.11	0.212	30.56	33.66
021	416.19	0.230	15.85	3.20	$\overline{2}61$	154.43	0.215	6.23	5.36
111	364.28	0.220	6.29	1.94	260	153.10	0.217	16.38	21.05
002	330.29	0.212	183.57	177.70	402	152.99	0.217	7.73	10.27
130	306.21	0.207	50.50	48.97	400	148.01	0.224	27.94	24.89
$\bar{2} 0 1$	305.99	0.207	40.71	39.13	$\bar{2}62$	147.79	0.224	49.00	49.69
200	296.03	0.204	87.24	84.98	334	138.54	0.242	1.94	0.46
Ī 3 1	295.59	0.204	172.23	166.47	115	136.66	0.246	1.31	0.51
022	281.28	0.201	2.03	6.66	401	135.99	0.248	1.69	0.29
040	268.33	0.198	5.18	2.74	243	134.74	0.251	2.01	0.64
131	262.90	0.197	430.49	432.59	154	134.52	0.252	4.11	1.62
$\tilde{2}$ 0 2	262.32	0.197	217.05	217.04	- • -	101.01			1.01
112	250.71	0.195	0.75	8.28					
201	244.32	0.194	1.43	2.96					
132	243.91	0.194	5.66	14.33					
113	224.64	0.191	1.60	5.83					
221	222.33	0.191	1.20	3.88					
003	220.02	0.191	1.20	0.82					
132	209.01	0.190	3.56	2.16					
042	208.27	0.190	5.41	6.37					
023	203.27	0.191	2.76	5.99					
$\frac{1}{2}$	201 74	0 191	5.08	1 00					
240	198.65	0.191	3.32	0.48					
151	198.51	0.191	3.43	0.10					
223	194.12	0.192	7.09	6.02					
202	193.81	0.192	49.17	48.48					
133	193.33	0.192	121.24	115.43					
151	187.64	0.193	4 55	2.41					
113	186.08	0.194	8 47	5.81					
222	182.29	0.195	7 4 4	4 84					
241	180.59	0.195	1 60	1.01					
331	178 89	0.196	153.96	128 71					
060	178.88	0.196	76.44	63.85					
311	172.97	0.196	2 94	1 96					
330	172.80	0.199	10 24	7 28					
061	172.67	0.199	5.86	4.06					
313	172.46	0.199	2.28	1.00					
332	170.46	0.199	2.77	1.86					
114	170.50	0.200	1.81	4.06					
043	170.08	0.201	1.21	2.10					
133	167.07	0.203	50.61	52.67					
$\overline{2}04$	166.69	0.203	23.59	25.92					
004	165.15	0.204	34.34	31.97					
152	164.84	0.204	2.17	1.99					
$\overline{2}43$	164.58	0.205	2.59	2.39					
024	157.71	0.211	1.91	2.14					

*Full width at half maximum.

116

Fig. 2. Comparison of the calculated [20] (top) X-ray powder pattern (Cu K α_1) of CuCr[P₂Se₆] with the observed X-ray powder patterns (Cu K α_1) of AgCr[P₂Se₆] (middle) and AgAl[P₂Se₆] (bottom).

h k l	CuCr[P2Se6] (calc.)		$AgCr[P_2Se_6$ (obs.)]	$AgAl[P_2Se_6]$ (obs.)		
	<i>d</i> (pm)	I/I _{max}	<i>d</i> (pm)	I/I _{max}	<i>d</i> (pm)	I/I _{max}	
001	666.16	36.0	666.15	57.1	671.69	34.8	
020	536.22	2.4	545.87	0.0	549.51	7.4	
Ī11	470.97	0.7	478.86	0.0	481.49	1.1	
021	416.19	3.7	422.10	9.6	425.22	0.0	
111	364.28	1.5	367.70	2.4	372.16	0.0	
002	330.08	41.0	332.86	22.8	335.69	27.3	
130	305.19	11.6	311.21	24.0	313.57	10.8	
$\bar{2}$ 0 1	305.78	40.7	311.64	6.0	313.25	17.3	
200	295.87	19.6	300.25	9.7	303.24	15.5	
Ī31	295.40	38.5	300.84	22.6	302.44	29.7	
022	281.28	1.5	284.44	2.6	286.75	1.3	
040	268.33	0.6	273.20	1.6	274.99	5.9	
131	262.70	100.0	266.27	100.0	268.83	100.0	
$\overline{2}$ 0 2	262.11	50.2	267.12	47.4	267.82	45.9	
112	250.71	1.9	252.65	1.6	255.65	0.1	
201	244.32	0.3	246.88	3.0	249.96	0.9	
$\bar{1}$ 3 2	243.91	3.3	247.93	4.1	249.13	10.4	
113	224.64	1.3	227.58	0.7	228.60	0.1	
221	222.33	0.2	224.95	0.0	227.53	0.0	
003	220.02	0.3	221.91	0.0	223.78	1.2	
132	209.01	0.8	211.27	0.4	213.43	0.5	
042	208.27	1.4	211.23	1.7	212.79	2.2	
023	203.72	1.3	205.74	1.8	207.44	6.2	
241	201.74	1.0	205.47	3.8	206.72	0.1	
240	198.65	0.7	201.94	1.7	203.59	4.3	
$\bar{2} 2 3$	194.12	1.4	197.82	1.6	198.44	0.5	
202	197.66	3.5	195.29	12.9	197.78	13.8	
133	193.17	26.7	195.93	23.8	196.93	20.8	
151	187.64	0.4	190.58	1.2	192.13	0.7	
113	186.08	1.3	187.47	1.9	189.57	2.3	
222	182.29	1.1	184.03	0.6	186.25	0.5	
241	180.59	0.4	183.09	0.1	184.89	0.1	
331	178.75	29.7	181.99	24.6	183.22	23.6	
060	178.74	14.8	181.95	1.9	183.18	10.7	
311	172.97	0.7	175.02	0.7	177.09	0.9	
330	172.80	1.7	175.51	0.7	177.12	2.4	
061	172.67	0.9	175.66	1.3	176.86	0.4	
313	172.46	0.5	175.76	1.9	176.24	1.3	
332	170.46	0.6	175.72	3.4	176.54	0.1	
114	170.50	0.4	172.49	0.4	173.46	0.1	
043	170.08	0.3	172.18	0.1	173.51	0.3	
133	166.95	12.2	168.54	6.0	170.25	8.3	
204	166.67	6.0	169.08	4.0	169.64	2.7	
004	165.02	7.3	166.45	5.5	167.83	4.5	

Comparison of the observed X-ray powder data of $AgCr[P_2Se_6]$ and $AgAl[P_2Se_6]$ with the calculated powder data of $CuCr[P_2Se_6]$

(continued)

h k l	CuCr[P ₂ Se ₆ (calc.)]	$AgCr[P_2Se_6$ (obs.)]	$AgAl[P_2Se_6]$ (obs.)	
	<i>d</i> (pm)	I/I _{max}	d (pm)	I/I _{max}	<i>d</i> (pm)	I/I _{max}
152	164.84	0.5	167.07	0.5	168.55	0.1
$\bar{2}$ 4 3	164.58	0.6	167.44	0.1	168.13	0.1
024	157.71	0.4	159.19	0.4	160.51	0.2
331	157.37	8.2	159.41	2.3	161.14	5.4
062	157.17	8.0	159.66	3.6	160.78	4.8
333	157.00	8.0	159.96	4.3	160.50	3.4
$\overline{2}$ 6 1	154.43	1.2	157.25	0.5	158.26	1.2
260	152.99	5.0	155.61	2.0	156.79	3.3
$\bar{4}$ 0 2	152.99	2.3	155.93	1.2	156.74	1.1
400	147.90	5.7	150.10	4.3	151.58	5.0
$\overline{2}$ 6 2	147.84	11.5	150.38	8.0	151.20	2.2
$\bar{3}34$	138.54	0.4	141.00	0.1	141.87	0.7
Ī15	136.66	0.3	138.16	0.5	139.36	0.4
401	135.99	0.4	137.65	0.0	139.50	0.3
243	134.74	0.5	136.09	0.3	137.84	0.4
$\bar{1}$ 5 4	134.52	0.9	136.40	0.8	137.59	0.1

TABLE 4 (continued)

Without exception, the crystals of metastable β -AgGa[P₂Se₆] were of very poor quality because of their perfect cleavage parallel (001) and their extreme sensitivity against mechanical strain (preferably bent crystals). The structure determination was started with the atomic positional parameters of the isotypic phase AgIn[P₂S₆], [12]. Observed and calculated X-ray powder data of β -AgGa[P₂Se₆] are given in Table 11. Again, the relatively poor consistency of the calculated and observed intensities is presumed to be caused by effects of texture because of the perfect cleavage of the crystals' parallel (001).

3. Crystal structures, results and discussion

The crystal structures of the isotypic phases $CuIn[P_2Se_6]$, $AgIn[P_2Se_6]$ and β -AgGa[P_2Se_6] are closely related to the CdI_2 -type structure. The selenium atoms form a h.c.p. arrangement with the layer sequence ...AB... running along the [001] direction (Fig. 5). The octahedral sites of every second selenium double-layer are occupied by M^I, M^{III} and P₂ pairs in such a way that the P₂ pairs within the (001) planes are alternately surrounded by M^I and M^{III} species (ordered distribution). The occupied octahedral layers turn with the sequence ...ab... along the [001] direction.

The isotypic phases $CuCr[P_2Se_6]$, $AgCr[P_2Se_6]$ and $AgAl[P_2Se_6]$ show close relations to the $CdCl_2$ type structure. The selenium atoms form a c.c.p. arrangement with the layer sequence ...ABC... running along the [001] direction. M^I, M^{III} and P₂ pairs occupy the octahedral sites of every second

 $AgIn[P_2Se_6]$: data pertaining to the structure determination; positional and thermal parameters; selected interatomic distances (pm) and bond angles (°)

Space group	$P\bar{3}1c$ (163), trigonal
Lattice parameters (pm)	a = 648.3(1)
	c = 1333.0(4)
Cell volume	$485.2 \text{ pm}^3 \times 10^6$
Ζ	2
Calculated density	10.4 g cm^{-3}
Absorption coefficient μ (Cu K α)	1220.0 cm^{-1}
Diffractometer	STOE, STADI/P
	Transmission powder
	diffractometer with
	position sensitive
	detector (STOE-PSD)
Radiation	Cu $K\alpha_1$
	(Germanium monochromator)
2θ range	10°<2 <i>θ</i> <100°
Structure solution and refinement	Isotypic relation to
	$AgIn[P_2S_6]$ [12]
	Rietveld method [20]
Number of measured data points	1705
Number of profile parameters refined	12
Number of positional parameters refined	9
Number of thermal parameters refined	4
R_{WP} ; $R(I, h k l)$	7.9; 17.1

Atom	x	y	z	Occupation	$U_{\rm iso}~({ m pm}^2)^{ m a}$
Ag	0.6667	0.3333	0.25	1.0	752(115)
In	0	0	0.25	1.0	290(72)
Р	0.3333	0.6667	0.1618(29)	1.0	5(128)
Se	0.3291(38)	0.3474(36)	0.1178(7)	1.0	281(34)
Ag-Se	284.7	6×	Se-Ag-Se	85.7	6×
				92.0	3×
				96.5	3×
				176.7	$3 \times$
In–Se	281.6	6×	Se-In-Se	85.0	6×
				92.2	3×
				97.9	3×
				175.7	$3 \times$
PP	234.9				
PSe	213.5	3×	P-P-Se	103.7	3×
			Se-P-Se	59.5	3×
				86.5	3×
				87.7	3×
				112.7	3×
				140.9	3×

 $U_{\rm iso}$ is defined as $\exp(-8\pi^{2*}U^*\sin^2\theta/\lambda^2)$.

Agln[P_2Se_6]: X-ray powder diffraction data; observed and calculated [20] intensities

hkl	$d_{ m obs}$ (pm)	FWHM ^a	$I_{\rm obs}$	I _{calc}	hkl	$d_{ m obs}$ (pm)	FWHM*	$I_{\rm obs}$	$I_{ m calc}$
002	666.65	0.294	217.50	220.63	306	143.13	0.424	17.13	14.22
$1 \ 0 \ 0$	561.49	0.298	6.54	3.16	$2\ 1\ 7$	141.73	0.427	2.35	2.39
101	517.50	0.300	1.77	9.46	$21\bar{7}$	141.73	0.427	6.50	6.60
102	429.56	0.306	28.81	23.50	$31\overline{4}$	141.08	0.428	3.49	3.90
103	348.48	0.315	103.41	80.59	314	141.08	0.428	3.75	4.19
004	333.35	0.318	94.04	66.68	401	139.59	0.431	3.34	1.41
1 1 0	324.19	0.319	27.33	8.76	402	137.35	0.435	2.64	1.06
$1 1 \overline{2}$	291.54	0.326	848.73	776.72	315	134.47	0.441	11.65	9.32
112	291.54	0.326	31.22	28.57	$31\bar{5}$	134.47	0.441	2.98	2.39
104	286.61	0.327	40.25	30.70	403	133.84	0.443	6.38	4.74
200	280.73	0.329	10.33	3.42	$21\bar{8}$	131.06	0.449	1.91	1.70
201	274.77	0.330	32.12	14.82	218	131.06	0.449	2.62	2.33
105	240.87	0.342	16.24	45.69	226	130.94	0.449	11.47	10.31
203	237.37	0.343	3.46	4.27	$22\bar{6}$	130.94	0.449	17.04	15.32
$11\bar{4}$	232.36	0.345	77.15	91.52	404	129.36	0.453	3.87	4.08
114	232.36	0.345	159.09	188.71	$32\bar{1}$	128.21	0.456	2.46	1.90
006	222.18	0.350	2.92	17.62	$31\bar{6}$	127.51	0.458	2.50	2.00
204	214.74	0.354	1.95	8.19	316	127.51	0.458	3.68	2.94
$2\ 1\ 1$	209.56	0.357	4.70	9.91	$32\bar{2}$	126.46	0.461	3.11	1.48
106	206.60	0.358	2.40	12.53	308	124.45	0.466	48.73	48.22
205	193.33	0.367	2.56	10.27	405	124.20	0.467	4.80	4.91
213	191.52	0.368	10.17	10.75	$1 1 \overline{10}$	123.28	0.470	39.96	34.55
300	187.18	0.372	233.06	210.87	219	121.45	0.475	2.30	1.36
116	183.29	0.375	72.10	76.47	4 12	120.50	0.478	53.29	46.72
$11\bar{6}$	183.29	0.375	34.33	36.41	412	120.50	0.478	2.81	2.47
107	180.34	0.377	7.75	6.41	324	120.14	0.479	1.47	1.16
302	180.20	0.378	30.82	26.35	$32\overline{4}$	120.14	0.479	1.13	0.89
214	179.02	0.379	4.50	4.86	414	114.99	0.497	6.65	6.88
$21\bar{4}$	179.02	0.379	5.43	5.86	414	114.99	0.497	15.33	15.85
206	174.22	0.383	1.34	8.20	416	107.28	0.531	8.66	9.65
008	166.65	0.391	34.08	31.91	416	107.28	0.531	9.41	10.49
$21\bar{5}$	166.04	0.392	14.97	16.41	327	106.69	0.534	3.87	3.73
304	163.19	0.395	37.12	40.16	$32\overline{7}$	106.69	0.534	1.84	1.77
108	159.76	0.399	5.81	2.80	$3 3 \bar{2}$	106.66	0.534	1.14	1.10
207	157.59	0.402	12.34	10.67	332	106.66	0.534	1.24	1.19
$2\ 2\ 2$	157.49	0.402	91.42	81.11	4 2Ī	105.77	0.539	1.87	1.39
$22{ar 2}$	157.49	0.402	4.26	3.78	$1 1 \overline{12}$	105.08	0.542	2.61	2.31
$3\ 1\ 1$	154.68	0.406	3.65	2.49	$1\ 1\ 12$	105.08	0.542	17.81	15.74
216	153.45	0.408	3.76	3.47	423	103.20	0.553	1.27	1.25
$21\bar{6}$	153.45	0.408	8.00	7.38	$2\ 2\ 10$	103.00	0.554	14.52	15.50
312	151.65	0.410	3.96	2.03	334	102.78	0.555	3.35	3.31
118	148.20	0.416	8.42	5.64	$33\bar{4}$	102.78	0.555	3.32	3.28
$11\bar{8}$	148.20	0.416	2.11	1.41	$32\bar{8}$	101.91	0.561	1.71	1.31
$31\bar{3}$	146.96	0.418	10.61	7.64	328	101.91	0.561	1.20	0.91
313	146.96	0.418	2.95	2.13					
224	145.76	0.420	15.27	12.54					
$22\overline{4}$	145.76	0.420	33.06	27.14					
208	143.30	0.424	3.65	3.04					

^aFull width at half maximum.

 $CuIn[P_2Se_6]$: data pertaining to the structure determination; positional and thermal parameters; selected interatomic distances (pm) and bond angles (°)

Space group	$P\bar{3}1c$ (163), trigonal
Lattice parameters (pm)	a = 639.2(0)
	c = 1333.8(1)
Cell volume	$472.0 \text{ pm}^3 \times 10^6$
Ζ	2
Calculated density	10.0 g cm^{-3}
Absorption coefficient μ (Cu K α)	980.8 cm^{-1}
Diffractometer	STOE, STADI/P
	Transmission powder
	diffractometer with
	position sensitive
	detector (STOE-PSD)
Radiation	Cu K α_1
	(Germanium monochromator)
2θ range	$10^{\circ} < 2\theta < 100^{\circ}$
Structure solution and refinement	Isotypic relation to
	$AgIn[P_2S_6]$ [12]
	Rietveld method [20]
Number of measured data points	1705
Number of profile parameters refined	12
Number of positional parameters refined	9
Number of thermal parameters refined	4
R_{WP} ; $R(I, h k l)$	9.4; 19.6

Atom	x	y	z	Occupation	$U_{\rm iso}~({\rm pm^2})^{\rm a}$
Cu	0.6667	0.3333	0.25	1.0	3781(617)
In	0	0	0.25	1.0	154(36)
Р	0.3333	0.6667	0.1655(24)	1.0	5(96)
Se	0.3306(24)	0.3401(25)	0.1201(7)	1.0	141(19)
Cu-Se	277.7	6×	Se-Cu-Se	85.2	6×
				93.7	3×
				95.9	$3 \times$
				178.4	$3 \times$
In-Se	275.7	6×	Se–In–Se	84.7	$6 \times$
				93.8	$3 \times$
				96.8	3×
P–P	225.3			177.8	$3 \times$
P-Se	216.5	$3 \times$	P-P-Se	106.2	$3 \times$
			Se-P-Se	61.2	3×
				86.4	3×
				87.2	$3 \times$
				112.5	3×
				142.3	3×

 $U_{\rm iso}$ is defined as $\exp(-8\pi^{2*}U^*\sin^2\theta/\lambda^2)$.

 $CuIn[P_2Se_6]$: X-ray powder diffraction data; observed and calculated [20] intensities

hkl	$d_{\rm obs}$ (pm)	FWHM ^a	$I_{\rm obs}$	Icalc	h k l	$d_{ m obs}$ (pm)	FWHM*	$I_{ m obs}$	Icalc
002	660.90	0.230	293.21	328.17	217	140.88	0.267	1.14	1.16
100	553.64	0.232	6.49	58.33	217	140.88	0.267	4.49	4.57
102	425.97	0.235	172.64	138.46	$31\overline{4}$	139.47	0.268	16.13	14.28
103	346.65	0.238	62.58	23.76	314	139.47	0.268	16.50	14.60
004	333.45	0.238	360.61	238.83	402	135.52	0.270	7.01	6.27
110	319.63	0.239	20.24	1.90	$21\bar{8}$	130.39	0.272	8.89	9.64
112	288.23	0.241	1492.83	1388.04	218	130.39	0.272	9.53	10.33
112	288.23	0.241	189.27	175.98	226	129.76	0.273	41.23	41.20
104	285.64	0.241	114.71	121.16	$22\bar{6}$	129.76	0.273	41.67	41.64
200	276.80	0.242	36.71	21.72	1010	129.67	0.273	5.18	5.00
201	271.03	0.242	7.16	0.64	404	127.83	0.274	15.87	11.70
202	255.66	0.244	27.67	46.06	320	127.01	0.274	5.45	4.04
$11\bar{4}$	230.75	0.247	122.72	160.73	321	126.43	0.275	1.54	1.19
114	230.75	0.247	223.73	293.03	$31\bar{6}$	126.33	0.275	13.42	10.14
204	212.98	0.249	27.51	47.52	316	126.33	0.275	15.93	12.03
210	209.25	0.249	9.02	20.16	322	124.76	0.276	5.04	3.32
21Ī	206.72	0.250	6.30	10.40	$3 2 \bar{2}$	124.76	0.276	8.44	5.56
106	206.29	0.250	42.12	59.41	308	123.71	0.276	121.63	126 50
$21\bar{2}$	199.65	0.251	15.76	19.40	$1 1 \overline{10}$	123.09	0.277	82.63	82.49
212	199.65	0.251	23.42	28.82	1 1 10	123.09	0.277	5 41	5 41
205	192.08	0.252	4.18	4.04	405	122.85	0.277	3 77	3 64
213	189.32	0.253	2.78	1.43	333	122.12	0.278	2 64	1 40
300	184.54	0.254	530.33	417.90	2010	120.16	0.279	3.51	3 47
116	182.50	0.254	130.37	159.03	412	118.87	0.280	157.25	199 49
116	182.50	0.254	111.54	136.06	412	118.87	0.200	26.13	20.35
107	180.17	0.255	5.81	3 30	324	118.69	0.200	8 36	6 19
302	177.85	0.255	44.70	28 46	324	118.69	0.200	7.06	5.99
214	177.24	0.256	34 58	27.87	406	117 /9	0.200	11.04	0.00 Q 49
$21\bar{4}$	177.24	0.256	35.86	28.90	228	115.37	0.201	3 62	10.40
206	173.33	0.257	41.95	35.16	414	113.58	0.200	24 75	21 11
008	166.73	0.258	63.47	67.34	414	113.58	0.204	17 91	40.20
215	164.64	0.259	8 4 1	8 47	318	119.00	0.204	41.04	40.59
304	161.46	0.260	168.52	170.30	318	112.04	0.200	4.13	4.91
108	159.64	0.260	19 23	18.95	326	110.28	0.200	1 79	0.17
207	156.95	0.261	8.94	6.32	330	106.54	0.201	75.07	56.00
222	155.42	0.201	206 30	160.60	100	100.54	0.291	10.91	00.01
222	155.42	0.202	200.00	28 21	400	100.49	0.291	5.00	3.09
310	153 55	0.202	651	5 40	410	100.15	0.291	01.00	41.93
311	152 54	0.202	2.00	0.45	410	100.15	0.191	47.90	38.71
311	152.54	0.200	2.00	2.20	041 000	105.08	0.292	4.12	3.75
216	152.04	0.200	16 75	9.00	004 000	105.21	0.292	2.39	2.09
216	152.00	0.200	21 59	19.00	552	105.21	0.292	2.42	2.12
210	140.62	0.203	10.91	20.20	1110	105.08	0.292	4.62	4.00
319	149.03	0.204	10.01	10.35	$11\frac{12}{10}$	104.98	0.293	48.63	40.09
110	143.03	0.204	0.30	04.00	$11\frac{12}{10}$	104.98	0.293	11.25	9.27
313	141.04	0.204	41.31	24.60	2210	102.40	0.296	3.08	2.71
994 994	140.10	0.200	4.49	2.18 97 00	∆ Z 10 9 2 4	102.40	0.296	51.14	44.99
224 997	144.12	0.400	33.13 20 Et	27.33	334	101.49	0.297	16.57	16.97
224 900	144.12	0.200	15 90	01.07 14.00	334 200	101.49	0.297	16.56	16.96
200	144.04	0.400	10.22	14.00	328	101.03	0.297	6.18	4.71
000	141.99	0.207	15.22	13.25	328	101.03	0.297	6.72	5.12

*Full width at half maximum.

Crystallographic data, positional parameters and the interatomic distances (pm) and angles (°) of α -AgGa[P₂Se₆]

Crystallographic data	
Space group	Pbca (61)
Lattice parameters (pm)	a = 1216.9(5)
	b = 2248.4(6)
	c = 747.3(2)
Cell volume	$2044.67 \text{ pm}^3 \times 10^6$
Z	4
Calculated density	2.32 g cm^{-3}
Data collection	
Diffractometer	Four-circle Philips
	PW 1100 diffractometer,
Radiation	Mo K α , graphite monochromator
Scan mode	θ/2θ
Number of measured reflections	1541
$(5^\circ \leq 2\theta \leq 90^\circ)$	
Number of observed reflections	855
$(I \ge 2\sigma(I))$	
Number of refined parameters	91
Absorption coefficient μ (Mo K α)	92.7 cm^{-1}
Absorption correction	DIFABS [21]
Structure solution and refinement	SHELX-86 [22]
Final R (aniso)	0.0622

Positional and thermal parameters^{a, b}

Atom	x		y z			$U_{ m eq}~(m pm^2)^{ m a}$
Ag	0.3997(4)		0.9839(2)	0.1593(6)		519(17)
Ga	0.3652(3)		0.1583(2)	0.2708(6)		187(22)
Р	0.0995(7)		0.1567(4) 0.455		7(15)	121(45)
Р	0.6269(9)		0.0877(4)	0.2586(15)		184(52)
Se	0.2341(3)		0.1329(2)	0.0398(5)		200(19)
Se	0.5063(3)		0.2274(2)	0.1885(6)		188(19)
Se	0.3040(3)		0.9933(2)	0.8483(6)		226(21)
Se	0.2636(3)		0.1918(2)	0.5293(6)		249(20)
Se	0.4906(3)		0.8797(2)	0.1756(5)		225(20)
Se	0.4636(3)		0.0695(2)	0.3754(5)		163(19)
Atom	U_{11}	U_{22}	U_{33}	<i>U</i> ₁₂	U_{13}	U_{23}
Ag	791(31)	332(21)	435(24)	174(22)	-279(25)	179(19)
Ga	116(20)	232(22)	212(24)	-37(19)	-24(19)	23(20)
Р	87(43)	61(39)	215(52)	- 4(38)	10(42)	26(41)
Р	266(56)	110(48)	176(52)	-21(46)	-51(48)	125(45)
Se	129(17)	288(21)	183(18)	-31(19)	45(18)	60(19)
Se	186(19)	143(17)	234(20)	15(16)	47(19)	73(17)
Se	214(19)	216(21)	249(22)	63(17)	-58(19)	-69(19)

(continued)

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Se Se Se	154(18) 228(20) 168(18)	363(22) 232(21) 152(19)	230(20) 216(19) 168(19)	-12(19) -10(18) -50(15)	8(20) -51(19) -7(17)	-125(21) -56(20) 25(17)
Interato	mic distances	and angles				
Ag-Se(2) Ag-Se(4) Ag-Se(4*) Ag-Se(6)		262.8(5) 260.8(6) 290.0(4) 259.5(6)		Se(6)-Ag-Se(4) Se(6)-Ag-Se(2) Se(6)-Ag-Se(4*) Se(4)-Ag-Se(2) Se(4)-Ag-Se(4*) Se(2)-Ag-Se(4*)		$107.7(2) \\ 120.4(2) \\ 120.1(2) \\ 128.3(2) \\ 92.2(2) \\ 79.8(1)$
Ga–Se(1 Ga–Se(2 Ga–Se(3 Ga–Se(5	.) 2) 3) 3)	241.8(6) 245.6(6) 239.6(6) 241.5(6)		Se(3)–Ga–Se(2 Se(3)–Ga–Se(2 Se(3)–Ga–Se(2 Se(1)–Ga–Se(2 Se(1)–Ga–Se(2 Se(1)–Ga–Se(2 Se(5)–Ga–Se(2)	1) 2) 5) 2) 5) 2) 2)	116.2(2) 105.0(2) 111.7(2) 110.9(2) 107.8(2) 104.4(2)
P(1)-P(2) P(1)-Se(6) P(1)-Se(5) P(1)-Se(3)		225.9(8) 213.8(5) 221.7(6) 223.0(4)	225.9(8) 213.8(5) 221.7(6) 223.0(4)		P(2)-P(1)-Se(6) P(2)-P(1)-Se(5) P(2)-P(1)-Se(3) Se(6)-P(1)-Se(5) Se(6)-P(1)-Se(3) Se(5)-P(1)-Se(3)	
P(2)Se P(2)Se P(2)Se	(4) (1) (2)	214.8(5) 221.3(5) 224.4(2)		P(1)-P(2)-Se(P(1)-P(2)-Se(P(1)-P(2)-Se(Se(4)-P(1)-Se Se(4)-P(1)-Se Se(1)-P(1)-Se	4) 1) 2) (1) (2) (2) (2) (2)	112.3(2) 105.0(2) 104.8(2) 115.2(2) 109.2(2) 109.6(3)

TABLE 9 (continued)

 ${}^{*}U_{eq}$ is defined as $\frac{1}{2}(\sum_{i}\sum_{j}U_{ij}a_{i}^{*}a_{j}^{*}a_{ij})$. ${}^{b}U_{ij}$ is defined as $\exp[-2\pi^{2}(U_{11}h^{2}a^{*2}+...+2U_{12}hka^{*}b^{*}+...)]$.

selenium double-layer (Fig. 6). The P_2 pairs within the (010) planes are in a random surrounding by M^I and M^{III} species. The occupied octahedral layers run with the sequence ... along the [010] direction.

The crystal structure of α -AgGa[P₂Se₆] contains [P₂Se₆] octahedra which share common edges with $[GaSe_4]$ tetrahedra, thereby giving polyhedral chains running within (010) planes parallel to the [100] direction. Along [010] adjacent chains (planes) are interconnected by sharing common edges and common apices with [AgSe₄] tetrahedra. The resulting layer structure is shown in Fig. 7. The structure is related to the crystal structure of $Ag_4[P_2Se_6]$ [2] which also contains the metal atoms in tetrahedral coordination and which shows similar principles of polyhedral condensation ($[P_2Se_6]$ octahedra sharing common edges and apices with [AgSe₄] tetrahedra). As distinguished

Crystallographic data, positional parameters and interatomic distances (pm) and angles (°) of β -AgGa[P₂Se₆]

Crystallog	raphic data						
Space group Lattice parameters (pm)				$P\bar{3}1c$ (163) a = 637.5(6)			
Cell volume				c = 1332 468.81	c = 1332.0(12) 468.81 pm ³ ×10 ⁶		
Ζ				2	2		
Calculated density				5.05 g d	cm ⁻³		
Data colle	ction						
Diffractom	eter			Four-cir	cle Philips		
Dediction				PW 1100 diffractometer,			
Scan mod	a			MO K α , graphite monochromator			
Number of	c f measured r	offections		0/20 1537			
$(5^{\circ} < 2\theta < 9)$	n nieasarea r 20°)	enecuons		1007			
Number of	f observed re	flections		392			
$(I \ge 2\sigma(I))$							
Number of	f refined para	ameters		16	_		
Absorption	coefficient	μ(Μο Κα)		92.7 cm	-1		
Absorption	correction			DIFABS	[21]		
Structure :	solution and	rennement		SHELX-	86 [22]		
rmain (a	iuso)			0.245			
Atom para	meters and t	emperature	factors				
Atom	x/a		y/b	z/c		$U_{\rm eq}~({\rm pm}^2)^{\rm a}$	
Ag	2/3		1/3	1/4		521(84)	
Ga	0		0	1/4		275(70)	
Se	0.3015	(9)	0.3218(1)	0.1214(5	5)	232(22)	
Р	1/3		2/3	0.1718(2	24)	242(57)	
Atom	<i>U</i> ₁₁	U_{22}	U_{33}	U_{12}	U13	U_{23}	
Ag	196(39)	196(39)	1171	98(19)	0(0)	0(0)	
Ga	106(41)	106(41)	614	53(21)	0(0)	0(0)	
Se	1(2)		536(3	6) -6(8)	22(23)	-5(6)	
Interatomi	c distances a	nd angles					
Ag-Se	286.2(6)	6×	Se-Ag-Se	87.9(9)	6×	
					93.9(2)	$3 \times$	
					90.4(2)	$3 \times$	
					177.5(0)	$3 \times$	
Ga-Se	262.6(6)	6×	Se-Ga-Se	101.3(3)	3×	
					94.8(3)	3×	
					82.0(2)	6×	
					175.0(3)	3×	
P-P	206.7(6)					
P-Se	221.1(11)	3×	P-P-Se	107.9(0)	3×	
				Se-P-Se	111.0(7)	3×	

^{*} U_{eq} is defined as $\frac{1}{3}(\sum_i \sum_j a_i^* a_j^* a_{ij})$.

	$d_{\rm colo}$ (pm)	I/Imax cala	$d_{\rm obs}$ (pm)	I/Imax obs
	calc (1)			illax obs
002	666.00	26.5	665.56	14.7
103	345.99	10.1	343.66	45.0
004	333.00	12.1	332.18	41.7
$1 \ 1 \ 2$	287.51	100.0	286.63	100.0
201	270.30	3.5	268.49	7.2
105	239.92	6.5	238.19	4.8
114	230.26	35.8	228.68	20.1
300	184.03	23.6	183.20	24.1
116	182.17	16.0	181.63	8.2
302	177.38	3.8	176.74	5.2
008	166.50	4.2	166.24	8.1
215	164.27	2.7	163.96	8.1
304	161.07	3.9	160.54	5.5
$2\ 2\ 2$	154.99	9.2	154.31	11.1
224	143.75	5.0	143.32	8.1
226	129.46	3.0	129.12	6.3
308	123.46	5.1	123.00	7.2

 β -AgGa[P₂Se₆] comparison of the observed and calculated X-ray powder data

Fig. 5. Crystal structure of the isotypic phases $CuIn[P_2Se_6]$, $AgIn[P_2Se_6]$ and β -AgGa[P_2Se_6] in polyhedral representation. Selenium atoms occupy the apices of the octahedra. The shaded octahedra contain the P₂ pairs; M^I and M^{III} are situated inside the unshaded octahedra (ordered distribution).

from α -AgGa[P₂Se₆] (layer structure) the crystal structure of Ag₄[P₂Se₆] [2] is based on a three-dimensional framework.

The bond lengths In–Se (275.7 pm and 281.6 pm) and Ga–Se (262.6 pm) in the crystal structures of CuIn[P₂Se₆], AgIn[P₂Se₆] and β -AgGa[P₂Se₆] correspond very well with the sum of the ionic radii (M^{III} in octahedral

Fig. 6. Crystal structure of the isotypic phases $CuCr[P_2Se_6]$, $AgCr[P_2Se_6]$ and $AgAl[P_2Se_6]$ in polyhedral representation. Selenium atoms occupy the apices of the octahedra. The shaded octahedra contain the P_2 pairs; M^1 and M^{III} are situated inside the unshaded octahedra (random distribution).

coordination) given by Pauling [23] (279.0 pm, 260.0 pm). The distances Cu/Cr–Se (263.4–264.1 pm) in the crystal structure of CuCr[P₂Se₆] are consistent with an average value of 272.0 pm, calculated from the sum of the ionic radii (Cr^{III}–Se: 267.0 pm [23]) and the observed bond length Cu–Se (277.7 pm) in the crystal structure of CuIn[P₂Se₆]. The distances Ag–Se in the octahedral layer structures of AgIn[P₂Se₆] and β -AgGa[P₂Se₆] (284.7 pm and 286.2 pm) are much smaller than calculated from the data given by Pauling ([23]; 324.0 pm) but they are in good agreement with the respective value in the crystal structure of AgV[P₂Se₆] ([18]; 287.0 pm).

The bond lengths P–Se in the crystal structures of $CuIn[P_2Se_6]$, $AgIn[P_2Se_6]$ and $CuCr[P_2Se_6]$ are nearly constant (216.5 pm, 213.5 pm and 211.3–211.5 pm) and do not directly depend on the size (average size) of the metal ions which participate in the formation of the compounds. The PSe₃ groups in this way appear as rigid entities, an observation already made by Brec *et al.* [24] for the respective thio compounds. On the other hand, the P–P distances within the $[P_2Se_6]$ groups include the possibility of variation in order to accommodate the metal sizes (P–P: 225.3 pm (CuIn[P_2Se_6]), 225.6 pm (CuCr[P_2Se_6]) and 234.9 pm (AgIn[P_2Se_6])). A very short P–P bond length (206.7) which is even shorter than the P–P distance in the crystal structure of Ni₂[P_2Se_6] ([24]; 214.8 pm) is present in the crystal structure

Fig. 7. Crystal structure of α -AgGa[P₂Se₆]; polyhedral representation. Selenium atoms occupy the apices of octahedra and tetrahedra. The octahedra contain the P₂ pairs, the darkly shaded tetrahedra contain Ga^{III} and the lightly shaded tetrahedra Ag^I.

of β -AgGa[P₂Se₆]; together with the comparatively long P–Se distance of 221.1 pm the bonding conditions underline the metastable character of this quaternary β -phase.

P–P and P–Se bond lengths (225.9 pm and 213.8–224.4 pm) in the crystal structure of α -AgGa[P₂Se₆] are of the same order as observed in the crystal structures of CuIn[P₂Se₆] and CuCr[P₂Se₆] and are also consistent with the respective values in the crystal structure of Ag₄[P₂Se₆] ([2]; 230 pm and 216–222 pm). Ga–Se distances (tetrahedral coordination of Ga^{III}; 239.6–245.6 pm) in the crystal structure of α -AgGa[P₂Se₆] are shorter than the Ga–Se bonds of Ga^{III} with octahedral coordination (262.6 pm in β -AgGa[P₂Se₆]); the Ag–Se bonds (Ag^I in tetrahedral coordination; 259.5–290.0 pm) in the crystal structure of α -AgGa[P₂Se₆] are of the same order as observed in the crystal structure of Ag₄[P₂Se₆] ([2]; 262.3–286.8 pm). As a common feature the [AgSe₄] tetrahedra in the crystal structures of the

Fig. 8. Optical absorption of AgIn[P₂Se₆] at 300 K.

Fig. 9. Phase relations in the quasibinary system $AgIn[P_2Se_6]/\alpha$ - $AgGa[P_2Se_6]$. DTA investigation during heating (3 °C min⁻¹; Ni–NiCr; inert reference); the samples were quenched from the melt and annealed at 400 °C (21 d). Phase compositions at normal temperature were investigated by X-ray powder methods.

ternary and the quaternary phases are characterized by three shorter and one significantly longer Ag–Se distance.

From the viewpoint of application of the quaternary selenodiphosphates in the field of photovoltaic devices [9, 10], the most promising material between the compounds given in Table 1 seems to be the silver indium phase (AgIn[P₂Se₆]). The congruent melting behaviour together with the perfect layer structure (variant of the CdI₂-type structure) make it possible to grow thin films with crystallographic orientation directly from the melt. Thin layers of the material are of a dark red colour with a metallic lustre and show a sharp band-gap at Eg = 1.79 eV (Fig. 8). Variation of Eg should be realized by formation of solid solutions between isotypic phases (see Table 1) or at least by partial (limited) solid solutions, which is shown as an example in Fig. 9 for the quasibinary system between the non-isotypic phases AgIn[P₂Se₆] and α -AgGa[P₂Se₆]. Further investigations in phase equilibria of multicomponent selenodiphosphate systems are in progress.

Acknowledgments

We thank Dr. K. Syassen, Dr. H. J. Beister and Mr. A. Breitschwerdt (Max-Planck-Institut für Festkörperforschung, Stuttgart) for optical absorption measurements and we also wish to acknowledge the support of this study by the Fonds der Chemischen Industrie and by the Freunde der TH-Darmstadt.

References

- 1 W. Klingen, G. Eulenberger and H. Hahn, Z. Anorg. Allg. Chem., 401 (1973) 97.
- 2 P. Toffoli, P. Khodadad and N. Roier, Acta Crystallogr., Sect. B, 34 (1978) 1779.
- 3 W. Welzel, Ph.D. Thesis, Universität Düsseldorf, 1987.
- 4 W. Klingen, R. Ott and H. Hahn, Z. Anorg. Allg. Chem., 396 (1973) 271.
- 5 C. D. Carpentier and R. Nitsche, Mater. Res. Bull., 9 (1974) 401.
- 6 M. Z. Jandali, G. Eulenberger and H. Hahn, Z. Anorg. Allg. Chem., 447 (1978) 105.
- 7 A. Katty, S. Soled and A. Wold, Mater. Res. Bull., 12 (1977) 663.
- 8 R. Diehl and C. D. Carpentier, Acta Crystallogr., Sect. B, 34 (1978) 1097.
- 9 M. Etman, Mater. Res. Bull., 17 (1982) 579.
- 10 T. Walter, R. Menner, L. Käser and H. W. Schock, Contributions to the 22nd IEEE Photovoltaic Specialists Conference, 1991.
- 11 R. Pfeiff and R. Kniep, GDCh Section of Solid State Chemistry, 6th Conference Meeting, Siegen September 26-28, 1990.
- 12 Z. Ouili, A. Leblanc and P. Colombet, J. Solid State Chem., 66 (1987) 86.
- 13 A. Leblanc, Z. Ouili and P. Colombet, Mater. Res. Bull., 20 (1985) 947.
- 14 S. Lee, P. Colombet, G. Ouvrard and R. Brec, Mater. Res. Bull., 21 (1986) 917.
- 15 P. Colombet, A. Leblanc, M. Danot and J. Rouxel, J. Solid State Chem., 41 (1982) 174.
- 16 S. Lee, P. Colombet, G. Ouvrard and R. Brec, Inorg. Chem., 27 (1988) 1291.
- 17 C. Payen, P. McMillan and P. Colombet, Eur. J. Solid State Inorg. Chem., 27 (1990) 881.
- 18 G. Ouvrard and R. Brec, Mater. Res. Bull., 23 (1988) 1199.
- 19 E. Durand, G. Ouvrard, M. Evian and R. Brec, Inorg. Chem., 29 (1990) 4916.
- 20 H. M. Rietveld, J. Appl. Cryst., 2 (1969) 65.
- 21 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.
- 22 G. M. Sheldrick, SHEXS 86, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, University of Göttingen, 1986.
- 23 L. Pauling, Die Natur der chemischen Bindung, Chemie, Weinheim, 1962.
- 24 R. Brec, G. Ouvrard and J. Rouxel, Mater. Res. Bull., 20 (1985) 1257.